Polarizarea luminii - Legea Malus

Cuvinte cheie: vectorul intensitate electrică a câmpului, plan de polarizare, lumină liniar polarizată, lumină circular polarizată, lumină eliptic polarizată, polarizor, analizor, plan de polarizare, axă de transmisie, axă de extincție, refracție dublă, axa optică, rază ordinară, rază extraordinară.

Principiu

Lumină monocromatică cade pe o placă de mică perpendicular pe axa optică a acesteia. La grosimi ale plăcii potrivite ($\lambda/4$, lamă sfert de undă) apare un defazaj de 90° între raza de lumină ordinară emergentă și raza de lumină extraordinară emergentă, când lumina iese din cristalul de mică. Polarizarea luminii emergente este investigată la diferite unghiuri între axa optică a lamei $\lambda/4$ și direcția de polarizare a luminii incidente.

Figura 1: Montaj experimental pentru determinarea tipului de polarizare a luminii

Echipament

Fotoelement bază	1
Suport lentile	3
Lentilă, montaj, f=+100 mm	1
Suport diafragmă	2
Diafragmă iris	1
Lentilă, f = 60 mm	1
Lampă cu mercur, 50 W, presiune înaltă	1
Sursă de alimentare H g $\mathrm{CS}/50~\mathrm{W}$	1
Filtru interferențial, galben, 578 nm	1
Filtru polarizor, pe suport	2
Profil de banc optic, l=1000 mm	1
Element glisant pentru bancul optic, $h=30 \text{ mm}$	8
Element glisant pentru bancul optic, $h = 80 \text{ mm}$	1
Lama mică	2
Multimetri digital	1
Amplificator de măsură universal	1
Cablu de legătură, l = 750 mm, roșu	1
Cablu de legătură, l = 750 mm, albastru	1
Suport lentilă	1
Bază de profil de banc optic	1

Objective

- 1. Măsurarea intensității luminoase polarizate liniar, în funcție de pozițiile unghiulare φ ale analizorului între -90° și 90° , cu pas de 10° . Verificarea legii Malus.
- 2. Măsurarea intensității luminoase în funcție de poziția analizorului , φ , cu valori între -90° și 90°, pentru unghiuri $\phi = 0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$ dintre axa de transmisie a polarizorului și a cristalului birefringent de grosime $\lambda/4$
- 3. Măsurarea intensității luminoase în funcție de poziția analizorului , φ , cu valori între -90° și 90°, pentru unghiuri $\phi = 0^{\circ}, 45^{\circ}$ dintre axa de transmisie a polarizorului și a cristalului birefringent de grosime $\lambda/2$

Teorie polarizarea luminii

În cele ce urmează este prezentată o schiță cu noțiuni de liceu despre polarizarea luminii. Să ne reamintim!

TAPTUL CĂ AM INTRODUS <u>UN FILTRU ANALIZOR</u> ÎNTRE CELE DOUĂ FILTRE POLAROIDE FACE CA DIN LUMINA INCIDENTĂ POLARIZATĂ VERTICAL SĂ TREACĂ MAI DEPARTE LUMINĂ LINIAR POLARIZATĂ SUB UN GHIUL φ , CARE ACUM ARE ȘI COMPONENTA PE ORIZONTALĂ \Longrightarrow TRECE LUMINĂ

Montaj și mod de lucru

Montajul experimental este prezentat în Fig.1. Pe bancul optic în ordine sunt prezente: lampa (cu lentilă de distanță focală 60mm), suport de lentilă cu diafragma în formă de iris, suport de lentilă cu filtru interferențial, polarizor, suport cu placă de sfert de undă $\lambda/4$, suport lentilă (distanța focală 100mm), analizor, fotodetector.

În primul rând fasciculul de raze de lumină este reglat astfel încât fotocelula este iluminată corespunzător (acest lucru este făcut în lipsa plăcii sfert de undă $\lambda/4$). Cu axa polarizorului pe zero, analizorul este rotit până când intensitatea luminoasă transmisă atinge un minim. În acest moment se montează placa de sfert de undă $\lambda/4$, și este rotită în suport până când din nou intensitatea luminii care trece prin analizor atinge un minim. Planul de polarizare al luminii emergente din polarizor acum face un unghi de $\phi = 0^{\circ}$ (sau $\phi = 90^{\circ}$) cu axa optică a plăcii sfert de undă $\lambda/4$. Intensitatea luminii transmisă prin analizor este măsurată în funcție de pozițiile unghiulare ale polarizorului, ϕ , 0° , 30° , 45° , 60° , 90° în domeniul , φ , -90° și 90° al analizorului.

Figura 2: Schiță montaj experimental: Polarizor (P), cristal birefringent, Analizor(A)

Intensitatea *curentului* fotocelulei este direct proporțională cu *intensitatea luminii incident*e.

Teorie și analiză

Viteza luminii propagându-se pe direcția axei optice a cristalului birefringent(placa de mică) are aceeași valoare, c_0 , în orice direcție a planului de polarizare. Când lumina se propagă și face unghiuri de 90° cu axa optică, lumina polarizată are aceeași viteză, c_0 , și vectorul câmpului electric în acest caz este perpendicular pe axa optică (rază ordinară, Fig.3). Dacă vectorul câmpului electric este paralel cu axa optică viteza luminii $c \neq c_0$ (raza extraordinară, Fig.3).

 E_0 este amplitudinea vectorului intensității câmpului electric emergent din polarizorul, P, (practic lumina în spatele polarizorului, P, este liniar polarizată), iar ϕ este unghiul dintre axa de transmisie a polarizorului, P, și axa optică a cristalului birefringent.

Figura 3: Descompunerea luminii de după polarizor prin cristalul birefringent(P- polarizorul, A- analizorul)

Din Fig.3, descompunând vectorul $\vec{E_0}$ găsim următoarele amplitudini ale câmpului pe direcție ordinară și extraordinară:

$$E_1 = E_0 \cdot \sin \phi$$

$$E_2 = E_0 \cdot \cos \phi$$
(1)

La momentul de timp t, starea de vibrație a celor două raze, ordinară și extraordinară, pe suprafața cristalului este descrisă de:

$$E_1(t) = E_0(t) \cdot \sin \phi \cdot \sin \omega t$$

$$E_2(t) = E_0(t) \cdot \cos \phi \cdot \sin \omega t$$
(2)

În cazul, cristalului birefringent ($\lambda/4$) cu grosimea sa este $d_{\lambda/4}$:

$$d_{\lambda/4} = \frac{\lambda}{4} \cdot \frac{1}{n_{ordinar} - n_{extraordinar}}$$
(3)

$$\Delta \varphi = \frac{2\pi}{\lambda} \cdot \Delta r \tag{4}$$

În ecuația 4, **diferența** dintre $n_{ordinar}$ indicele de refracție al razei ordinare și $n_{extraordinar}$ indicele de refracție al razei extraordinare din cristal, **produce** o diferență de drum $\Delta r = \lambda/4$ (**și anume un defazaj** = $\Delta \varphi$ **de** $\pi/2$) între cele două armonici (între cele două raze E_1, E_2). Astfel că, la ieșirea din cristal obținem noile raze acum numite E_x, E_y defazate între ele cu $\pi/2$ care arată în modul următor:

$$E_x(t) = E_0(t) \cdot \sin \phi \cdot \sin \omega t$$

$$E_y(t) = E_0(t) \cdot \cos \phi \cdot \cos \omega t$$
(5)

Aceste armonici, E_x , E_y se recompun, cu regula paralelogramului, și rezultă la ieșire din cristal **vectorul intensitate** E, care este **un vector rotitor conform Fig.2**. și care este perpendicular pe direcția de propagare.

Discuție

• Pentru unghiul $\phi = 0^{\circ}$ ecuația (5) devine:

$$E_x(t) = 0$$

$$E_y(t) = E_0(t) \cos \omega t$$
(6)

Amplitudinea vectorului \vec{E} rezultant este:

$$E = \sqrt{E_x^2 + E_y^2} = E_y = E_0$$

$$I = I_0 \sim E_0^2$$
(7)

 \rightarrow lumină liniar polarizată, dealungul axe
ioy

Figura 4: Polarizor la unghiul $\phi=0^\circ,$ Analizor la unghiul $\varphi=0^\circ,$ lumină liniar polarizată vertical

• Pentru unghiul $\phi = 90^{\circ}$ ecuația (5) devine:

$$E_x(t) = E_0(t) \sin \omega$$

$$E_y(t) = 0$$
(8)

Amplitudinea vectorului \vec{E} rezultant este:

$$E = \sqrt{E_x^2 + E_y^2} = E_x = E_0$$

$$I = I_0 \sim E_0^2$$
(9)

 \rightarrow lumină liniar polarizată, dealungul axe
iox

Figura 5: Polarizor la unghiul $\phi=90^\circ,$ Analizor la unghiul $\varphi=0^\circ,$ lumină liniar polarizată orizontal

• Pentru unghiul $\phi = 45^{\circ}, \sin \phi = \cos \phi = \frac{1}{\sqrt{2}}$, ecuația (5) devine:

$$E_x(t) = \frac{E_0(t)}{\sqrt{2}} \cdot \sin \omega t$$

$$E_y(t) = \frac{E_0(t)}{\sqrt{2}} \cdot \cos \omega t$$
(10)

Amplitudinea vectorului \vec{E} rezultant este:

$$E = \sqrt{E_x^2 + E_y^2} = \frac{E_0}{\sqrt{2}}$$
$$I = \frac{I_0}{2} \sim \frac{E_0^2}{2}$$
(11)

 \rightarrow lumină circular polarizată

Figura 6: Polarizor la unghiul $\phi=45^\circ,$ Analizor la unghiul $\varphi=-90^\circ...90^\circ,$ lumină circular polarizată

• Pentru oricare alte unghiuri, altele decât $\phi=0^\circ$, $\phi=45^\circ$ sau $\phi=90^\circ,$ ecuația (5) devine:

$$E_x(t) = E_a \cdot \sin \omega t$$

$$E_y(t) = E_b \cdot \cos \omega t$$
(12)

Unde am notat:

$$\begin{aligned} E_a &= E_0 \sin \phi \\ E_b &= E_0 \cos \phi \end{aligned} \tag{13}$$

Vârful vectorului \vec{E} , care se rotește în jurul direcției de propagare a luminii, descrie o elipă cu semi-axele E_a, E_b .

$$I = I_a \sim E_a^2 = E_0^2 \cdot \sin^2 \phi$$

$$I = I_b \sim E_b^2 = E_0^2 \cdot \cos^2 \phi$$
(14)

Rotind analizorul obținem următorul raport între intensitatea maximă transmisă și intensitatea minimă transmisă:

$$\frac{I_a}{I_b} = \frac{E_a^2}{E_b^2} = tg^2\phi \tag{15}$$

Pentru oricare unghi, φ , dintre analizorului de la capăt și axa optică a cristalului birefringent(placa de mică $\lambda/4$), se obține formula generală a intensității:

$$I \sim E_0^2 \cdot \cos^2 \phi \cdot \cos^2 \phi + E_0^2 \cdot \sin^2 \phi \cdot \sin^2 \phi \tag{16}$$

Figura 7: Polarizor la unghiul ϕ oarecare, Analizor la unghiul $\varphi=-90^\circ...90^\circ,$ lumină eliptic polarizată

Observatie:

În ecuația (16) dacă înlocuim $\phi = 0^{\circ}$ sau cu $\phi = 90^{\circ}$ elipsa degenerează întro linie, și obținem (7) și (9) \rightarrow lumină liniar polarizată, dealungul axei

În ecuația (16) dacă înlocui
m $\phi=45^\circ$ elipsa devine un cerc, și obținem (11)
 \rightarrow lumină circular polarizată

Pentru alte unghiuri, în general: \rightarrow lumina eliptic polarizată.

Figura 8: Distribuția de intensitate a luminii liniar polarizate în funcție de unghiuri φ făcute între axa de transmisie a polarizorului și analizorul. Legea Malus

φ (grade)	$I(\mu A)$
90	
80	
70	
60	
50	
40	
30	
20	
10	
0	
-10	
-20	
-30	
-40	
-50	
-60	
-70	
-80	
-90	

φ (grade)	$I(\mu A)$
90	
80	
70	
60	
50	
40	
30	
20	
10	
0	
-10	
-20	
-30	
-40	
-50	
-60	
-70	
-80	
-90	

Reprezentați grafic distribuția de intensitate în funcție de unghiul analizorului. (cazul în care între polarizorul P și analizorul A, nu este montată placa de mică de sfert de undă $\lambda/4$)

9	$\phi = 0^{\circ}$	ϕ	$=45^{\circ}$	ϕ	$=90^{\circ}$
φ (grade)	$I(\mu A)$	φ (grade)	$I(\mu A)$	φ (grade)	$I(\mu A)$
90		90		90	
80		80		80	
70		70		70	
60		60		60	
50		50		50	
40		40		40	
30		30		30	
20		20		20	
10		10		10	
0		0		0	
-10		-10		-10	
-20		-20		-20	
-30		-30		-30	
-40		-40		-40	
-50		-50		-50	
-60		-60		-60	
-70		-70		-70	
-80		-80		-80	
-90		-90		-90	
ϕ	$p = 30^{\circ}$	ϕ	$=60^{\circ}$	pla	aca $\lambda/2$
$\varphi $ (grade)	$= 30^{\circ}$ $I(\mu A)$	ϕ (grade)	$= 60^{\circ}$ $I(\mu A)$	$\frac{\text{pla}}{\varphi \text{ (grade)}}$	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \hline \varphi \text{ (grade)} \\ \hline 90 \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	$ \begin{array}{c} \phi \\ \varphi \text{ (grade)} \\ 90 \end{array} $	$= 60^{\circ}$ $I(\mu A)$	$ \begin{array}{c} \text{pla}\\ \varphi \text{ (grade)}\\ 90 \end{array} $	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \varphi \text{ (grade)} \\ 90 \\ 80 \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	$ \begin{array}{c} \phi \\ \varphi (\text{grade}) \\ 90 \\ 80 \end{array} $	$= 60^{\circ}$ $I(\mu A)$	$pla \\ \varphi \text{ (grade)} \\ 90 \\ 80$	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \hline \varphi \text{ (grade)} \\ 90 \\ \hline 80 \\ \hline 70 \\ \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	$\varphi \text{ (grade)}$ 90 80 70	$= 60^{\circ}$ $I(\mu A)$	$pla \\ \varphi (grade) \\ 90 \\ 80 \\ 70$	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \hline \varphi \text{ (grade)} \\ 90 \\ \hline 80 \\ \hline 70 \\ \hline 60 \\ \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	$\varphi (grade)$ 90 80 70 60	$= 60^{\circ}$ $I(\mu A)$	pla $\varphi \text{ (grade)}$ 90 80 70 60	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \hline \varphi \ (\text{grade}) \\ \hline 90 \\ \hline 80 \\ \hline 70 \\ \hline 60 \\ \hline 50 \\ \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50	$= 60^{\circ}$ $I(\mu A)$	$pla \\ \varphi (grade) \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ $	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{r} \phi \\ $	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40	$= 60^{\circ}$ $I(\mu A)$	$pla \\ \varphi (grade) \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ $	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \varphi (\text{grade}) \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \end{array}$	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{r} \phi \\ \varphi (\text{grade}) \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \end{array}$	aca $\lambda/2$ $I(\mu A)$
	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \end{array}$	aca $\lambda/2$ $I(\mu A)$
	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \end{array}$	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \hline \varphi \text{ (grade)} \\ 90 \\ \hline 90 \\ \hline 80 \\ \hline 70 \\ \hline 60 \\ \hline 50 \\ \hline 40 \\ \hline 30 \\ \hline 20 \\ \hline 10 \\ \hline 0 \\ \hline -10 \\ \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0 -10	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \end{array}$	aca $\lambda/2$ $I(\mu A)$
	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0 -10 -20	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \end{array}$	aca $\lambda/2$ $I(\mu A)$
	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0 -10 -20 -30	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ \end{array}$	aca $\lambda/2$ $I(\mu A)$
	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \end{array}$	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -50 \\ \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -50 \\ \end{array}$	aca $\lambda/2$ $I(\mu A)$
$ \begin{array}{c} \phi \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -50 \\ -60 \\ \end{array} $	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \; (\text{grade}) \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -30 \\ -40 \\ -50 \\ -60 \end{array}$	aca $\lambda/2$ $I(\mu A)$
$\begin{array}{c} \phi \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -50 \\ -60 \\ -70 \end{array}$	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -30 \\ -40 \\ -50 \\ -60 \\ -70 \\ \end{array}$	aca $\lambda/2$ $I(\mu A)$
$\begin{array}{c} \phi \\ \varphi \text{ (grade)} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -50 \\ -60 \\ -70 \\ -80 \end{array}$	$P = 30^{\circ}$ $I(\mu A)$	ϕ (grade) 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80	$= 60^{\circ}$ $I(\mu A)$	$\begin{array}{c} \text{pla} \\ \varphi \; (\text{grade}) \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -50 \\ -50 \\ -60 \\ -70 \\ -80 \\ \end{array}$	aca $\lambda/2$ $I(\mu A)$

Reprezentați graficele distribuțiilor de intensitate în funcție de unghiul analizorului. (cazul în care între polarizorul P și analizorul A este montată placa de mică de sfert de undă $\lambda/4$)

Figura 9: Distribuții de intensitate (pentru unghiuri $\phi = 0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ})$ a luminii polarizate în funcție de unghiul φ al analizorului făcut cu axa optică a plăcii sfert de undă

Figura 10: Distribuția de intensitatea a luminii polarizate, care trece prin placa $\lambda/2$, la diferite unghiri φ , ale analizorului